Bayesian neural networks for bridge integrity assessment
نویسندگان
چکیده
In recent years, neural network models have been widely used in the Civil Engineering field. Interesting enhancements may be obtained by re-examining this model from the Bayesian probability logic viewpoint. Using this approach, it will be shown that the conventional regularized learning approach can be derived as a particular approximation of the Bayesian framework. Network training is only a first level where Bayesian inference can be applied to neural networks. It can also be utilized in another three levels in a hierarchical fashion: for the optimization of the regularization terms, for data-based model selection, and to evaluate the relative importance of different inputs. In this paper, after a historical overview of the probability logic approach and its application in the field of neural network models, the existing literature is revisited and reorganized according to the enunciated four levels. Then, this framework is applied to develop a two-step strategy for the assessment of the integrity of a long-suspension bridge under ambient vibrations. In the first step of the proposed strategy, the occurrence of damage is detected and the damaged portion of the bridge is identified. In the second step, the specific damaged element is recognized and the intensity of damage is evaluated. The Bayesian framework is applied in both steps and the improvements in the results are discussed. Copyright r 2010 John Wiley & Sons, Ltd.
منابع مشابه
Soft Computing Based Multilevel Strategy for Bridge Integrity Monitoring
In recent years, structural integrity monitoring has become increasingly important in structural engineering and construction management. It represents an important tool for the assessment of the dependability of existing complex structural systems as it integrates, in a unified perspective, advanced engineering analyses and experimental data processing. In the first part of this work the conce...
متن کاملEstimation of Products Final Price Using Bayesian Analysis Generalized Poisson Model and Artificial Neural Networks
Estimating the final price of products is of great importance. For manufacturing companies proposing a final price is only possible after the design process over. These companies propose an approximate initial price of the required products to the customers for which some of time and money is required. Here using the existing data of already designed transformers and utilizing the bayesian anal...
متن کاملImprove Estimation and Operation of Optimal Power Flow(OPF) Using Bayesian Neural Network
The future of development and design is impossible without study of Power Flow(PF), exigency the system outcomes load growth, necessity add generators, transformers and power lines in power system. The urgency for Optimal Power Flow (OPF) studies, in addition to the items listed for the PF and in order to achieve the objective functions. In this paper has been used cost of generator fuel, acti...
متن کاملComparison Study on Neural Networks in Damage Detection of Steel Truss Bridge
This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear n...
متن کاملProbabilistic Contaminant Source Identification in Water Distribution Infrastructure Systems
Large water distribution systems can be highly vulnerable to penetration of contaminant factors caused by different means including deliberate contamination injections. As contaminants quickly spread into a water distribution network, rapid characterization of the pollution source has a high measure of importance for early warning assessment and disaster management. In this paper, a methodology...
متن کامل